Plant–pollinator network change across a century in the subarctic (2024)

References

  1. Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article Google Scholar

  2. Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE 7, e35954 (2012).

    Article CAS Google Scholar

  3. Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article Google Scholar

  4. Rodger, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524 (2021).

    Article Google Scholar

  5. Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    Article CAS Google Scholar

  6. Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999 (2020).

    Article CAS Google Scholar

  7. Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    Article Google Scholar

  8. Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

    Article Google Scholar

  9. Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article Google Scholar

  10. Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).

    Article Google Scholar

  11. Valdovinos, F. S. et al. Species traits and network structure predict the success and impacts of pollinator invasions. Nat. Commun. 9, 2153 (2018).

    Article Google Scholar

  12. Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).

    Article Google Scholar

  13. Brosi, B. J. Pollinator specialization: from the individual to the community. New Phytol. 210, 1190–1194 (2016).

    Article Google Scholar

  14. Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

    Article Google Scholar

  15. Waser, N. M. & Ollerton, J. Plant–Pollinator Interactions: From Specialization to Generalization (Univ. of Chicago Press, 2006).

  16. Ashman, T.-L., Arceo-Gómez, G., Bennett, J. M. & Knight, T. M. Is heterospecific pollen receipt the missing link in understanding pollen limitation of plant reproduction? Am. J. Bot. 107, 845–847 (2020).

    Article Google Scholar

  17. Garibaldi, L. A. et al. Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 52, 1436–1444 (2015).

    Article Google Scholar

  18. CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2021).

    Article Google Scholar

  19. Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).

    Article CAS Google Scholar

  20. Jacquemin, F. et al. Loss of pollinator specialization revealed by historical opportunistic data: insights from network-based analysis. PLoS ONE 15, e0235890 (2020).

    Article CAS Google Scholar

  21. Mathiasson, M. E. & Rehan, S. M. Wild bee declines linked to plant–pollinator network changes and plant species introductions. Insect Conserv. Divers. 13, 595–605 (2020).

    Article Google Scholar

  22. Bennett, J. M. et al. A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap. AoB Plants 10, ply068 (2018).

    Article Google Scholar

  23. Doré, M., Fontaine, C. & Thébault, E. Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Glob. Change Biol. 27, 1266–1280 (2021).

    Article Google Scholar

  24. Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).

    Article CAS Google Scholar

  25. Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    Article CAS Google Scholar

  26. Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140 (2018).

    Article Google Scholar

  27. Kearns, C. A. Anthophilous fly distribution across an elevation gradient. Am. Midl. Nat. 127, 172–182 (1992).

    Article Google Scholar

  28. Kevan, P. G. Insect pollination of high arctic flowers. J. Ecol. 60, 831–847 (1972).

    Article Google Scholar

  29. Tiusanen, M., Hebert, P. D. N., Schmidt, N. M. & Roslin, T. One fly to rule them all—muscid flies are the key pollinators in the arctic. Proc. Roy. Soc. B 283, 20161271 (2016).

    Article Google Scholar

  30. Weiner, C., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 12, 292–299 (2011).

    Article Google Scholar

  31. Rader, R., Edwards, W., Westcott, D. A., Cunningham, S. A. & Howlett, B. G. Pollen transport differs among bees and flies in a human-modified landscape. Divers. Distrib. 17, 519–529 (2011).

    Article Google Scholar

  32. Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).

    Article Google Scholar

  33. Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).

    Article Google Scholar

  34. Silén, F. Blombiologiska iakttagelser i Kittilä Lappmark. Medd. Soc. Fauna Flora Fennica 31, 80–99 (1906).

    Google Scholar

  35. Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional hom*ogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    Article Google Scholar

  36. Erhardt, A. Pollination of Dianthus superbus L. Flora 185, 99–106 (1991).

    Article Google Scholar

  37. Witt, T., Jürgens, A., Geyer, R. & Gottsberger, G. Nectar dynamics and sugar composition in flowers of Silene and Saponaria species (Caryophyllaceae). Plant Biol. 1, 334–345 (1999).

    Article CAS Google Scholar

  38. Morales, C. L. & Traveset, A. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).

    Article CAS Google Scholar

  39. Ashman, T.-L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070 (2013).

    Article Google Scholar

  40. Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B 282, 20142934 (2015).

    Article Google Scholar

  41. Stavert, J. R. et al. Hairiness: the missing link between pollinators and pollination. PeerJ 4, e2779 (2016).

    Article Google Scholar

  42. Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. R. Soc. B 287, 20200508 (2020).

    Article Google Scholar

  43. Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B. 279, 4845–4852 (2012).

    Article Google Scholar

  44. Fründ, J., Dormann, C. F., Holzschuh, A. & Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94, 2042–2054 (2013).

    Article Google Scholar

  45. Magrach, A., Molina, F. P. & Bartomeus, I. Niche complementarity among pollinators increases community-level plant reproductive success. Peer Commun. J. 1, e1 (2021).

    Article Google Scholar

  46. Giménez-Benavides, L., Dötterl, S., Jürgens, A., Escudero, A. & Iriondo, J. M. Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a SileneHadena interaction. Oikos 116, 1461–1472 (2007).

    Google Scholar

  47. Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).

    Article Google Scholar

  48. Vizentin-Bugoni, J., Debastiani, V. J., Bastazini, V. A. G., Maruyama, P. K. & Sperry, J. H. Including rewiring in the estimation of the robustness of mutualistic networks. Methods Ecol. Evol. 11, 106–116 (2020).

    Article Google Scholar

  49. Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).

    Article CAS Google Scholar

  50. Pekkarinen, A. & Teräs, I. Zoogeography of Bombus and Psithyrus in northwestern Europe (Hymenoptera, Apidae). Ann. Zool. Fennici 30, 187–208 (1993).

    Google Scholar

  51. Arbetman, M. P., Gleiser, G., Morales, C. L., Williams, P. & Aizen, M. A. Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proc. R. Soc. B 284, 20170204 (2017).

    Article Google Scholar

  52. Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    Article CAS Google Scholar

  53. Arceo-Gómez, G., Barker, D., Stanley, A., Watson, T. & Daniels, J. Plant–pollinator network structural properties differentially affect pollen transfer dynamics and pollination success. Oecologia 192, 1037–1045 (2020).

    Article Google Scholar

  54. de Santiago-Hernández, M. H. et al. The role of pollination effectiveness on the attributes of interaction networks: from floral visitation to plant fitness. Ecology 100, e02803 (2019).

    Article Google Scholar

  55. Koch, V., Zoller, L., Bennett, J. M. & Knight, T. M. Pollinator dependence but no pollen limitation for eight plants occurring north of the Arctic Circle. Ecol. Evol. 10, 13664–13672 (2020).

    Article Google Scholar

  56. Loboda, S., Savage, J., Buddle, C. M., Schmidt, N. M. & Høye, T. T. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41, 265–277 (2018).

    Article Google Scholar

  57. Høye, T. T., Post, E., Schmidt, N. M., Trøjelsgaard, K. & Forchhammer, M. C. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3, 759–763 (2013).

    Article Google Scholar

  58. Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    Article CAS Google Scholar

  59. Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).

    Article Google Scholar

  60. Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B 374, 20170389 (2019).

    Article Google Scholar

  61. Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Func. Ecol. https://doi.org/10.1111/1365-2435.14211 (2022).

  62. Hyne, C. J. C. W. Through Arctic Lapland (A. and C. Black, 1898).

  63. Knuth, P. Handbuch der Blütenbiologie, unter Zugrundelegung von Herman Müllers Werk: ‘Die Befruchtung der Blumen durch Insekten’ (W. Engelmann, 1898).

  64. Zoller, L. & Knight, T. M. Historical records of plant-insect interactions in subarctic Finland.BMC Res. Notes 15, 317 (2022).

    Article Google Scholar

  65. Zoller, L. & Knight, T. M. Historical records of plant–insect interactions in subarctic Finland. figshare https://doi.org/10.6084/m9.figshare.c.5828663.v4 (2022).

  66. Zoller, L., Bennett, J. M. & Knight, T. M. Diel-scale temporal dynamics in the abundance and composition of pollinators in the arctic summer. Sci. Rep. 10, 21187 (2020).

    Article CAS Google Scholar

  67. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  68. Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article Google Scholar

  69. Klotz, S., Kühn, I. & Durka, W. Biolflor Database (UFZ—Centre for Environmental Research Leipzig-Halle, 2002); https://www.ufz.de/biolflor/index.jsp

  70. Oksanen, J. et al. vegan: Community ecology package. R version 2.5.7 (2020).

  71. Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).

    Article Google Scholar

  72. Dormann, C. F. et al. bipartite: Visualising bipartite networks and calculating some (ecological) indices. R version 2.16 (2021).

  73. Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).

    Article Google Scholar

  74. Stefan, V. & Knight, T. M. bootstrapnet: Bootstrap network metrics. R version 1.0.0 https://valentinitnelav.github.io/bootstrapnet/ (2021).

  75. Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    Article Google Scholar

  76. Poisot, T. Dissimilarity of species interaction networks: quantifying the effect of turnover and rewiring. Peer Community Journal 2, e35 (2022).

    Article Google Scholar

  77. Dormann, C. F. How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 1, 1 (2011).

    Google Scholar

Download references

Plant–pollinator network change across a century in the subarctic (2024)
Top Articles
Latest Posts
Article information

Author: Msgr. Benton Quitzon

Last Updated:

Views: 6210

Rating: 4.2 / 5 (43 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Msgr. Benton Quitzon

Birthday: 2001-08-13

Address: 96487 Kris Cliff, Teresiafurt, WI 95201

Phone: +9418513585781

Job: Senior Designer

Hobby: Calligraphy, Rowing, Vacation, Geocaching, Web surfing, Electronics, Electronics

Introduction: My name is Msgr. Benton Quitzon, I am a comfortable, charming, thankful, happy, adventurous, handsome, precious person who loves writing and wants to share my knowledge and understanding with you.